a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
A__H2(X, X) -> A__G3(mark1(X), mark1(X), a__f1(a__k))
MARK1(d) -> A__D
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(g3(X1, X2, X3)) -> MARK1(X2)
A__B -> A__D
MARK1(c) -> A__C
MARK1(g3(X1, X2, X3)) -> MARK1(X1)
A__A1 -> A__H2(a__f1(a__a), a__f1(a__b))
MARK1(a) -> A__A
MARK1(g3(X1, X2, X3)) -> MARK1(X3)
A__A1 -> A__F1(a__b)
A__H2(X, X) -> A__F1(a__k)
A__H2(X, X) -> MARK1(X)
MARK1(h2(X1, X2)) -> A__H2(mark1(X1), mark1(X2))
A__A -> A__D
A__A1 -> A__B
MARK1(b) -> A__B
A__A -> A__C
A__F1(X) -> A__Z2(mark1(X), X)
MARK1(f1(X)) -> MARK1(X)
A__A1 -> A__F1(a__a)
A__B -> A__C
MARK1(A) -> A__A1
MARK1(f1(X)) -> A__F1(mark1(X))
A__F1(X) -> MARK1(X)
MARK1(k) -> A__K
A__A1 -> A__A
MARK1(z2(X1, X2)) -> MARK1(X1)
MARK1(h2(X1, X2)) -> MARK1(X1)
A__H2(X, X) -> A__K
A__G3(d, X, X) -> A__A1
A__Z2(e, X) -> MARK1(X)
MARK1(g3(X1, X2, X3)) -> A__G3(mark1(X1), mark1(X2), mark1(X3))
MARK1(h2(X1, X2)) -> MARK1(X2)
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
A__H2(X, X) -> A__G3(mark1(X), mark1(X), a__f1(a__k))
MARK1(d) -> A__D
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(g3(X1, X2, X3)) -> MARK1(X2)
A__B -> A__D
MARK1(c) -> A__C
MARK1(g3(X1, X2, X3)) -> MARK1(X1)
A__A1 -> A__H2(a__f1(a__a), a__f1(a__b))
MARK1(a) -> A__A
MARK1(g3(X1, X2, X3)) -> MARK1(X3)
A__A1 -> A__F1(a__b)
A__H2(X, X) -> A__F1(a__k)
A__H2(X, X) -> MARK1(X)
MARK1(h2(X1, X2)) -> A__H2(mark1(X1), mark1(X2))
A__A -> A__D
A__A1 -> A__B
MARK1(b) -> A__B
A__A -> A__C
A__F1(X) -> A__Z2(mark1(X), X)
MARK1(f1(X)) -> MARK1(X)
A__A1 -> A__F1(a__a)
A__B -> A__C
MARK1(A) -> A__A1
MARK1(f1(X)) -> A__F1(mark1(X))
A__F1(X) -> MARK1(X)
MARK1(k) -> A__K
A__A1 -> A__A
MARK1(z2(X1, X2)) -> MARK1(X1)
MARK1(h2(X1, X2)) -> MARK1(X1)
A__H2(X, X) -> A__K
A__G3(d, X, X) -> A__A1
A__Z2(e, X) -> MARK1(X)
MARK1(g3(X1, X2, X3)) -> A__G3(mark1(X1), mark1(X2), mark1(X3))
MARK1(h2(X1, X2)) -> MARK1(X2)
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
A__H2(X, X) -> A__G3(mark1(X), mark1(X), a__f1(a__k))
A__A1 -> A__F1(a__a)
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(g3(X1, X2, X3)) -> MARK1(X2)
MARK1(A) -> A__A1
MARK1(f1(X)) -> A__F1(mark1(X))
MARK1(g3(X1, X2, X3)) -> MARK1(X1)
A__A1 -> A__H2(a__f1(a__a), a__f1(a__b))
A__F1(X) -> MARK1(X)
MARK1(g3(X1, X2, X3)) -> MARK1(X3)
A__A1 -> A__F1(a__b)
A__H2(X, X) -> A__F1(a__k)
A__H2(X, X) -> MARK1(X)
MARK1(z2(X1, X2)) -> MARK1(X1)
MARK1(h2(X1, X2)) -> MARK1(X1)
MARK1(h2(X1, X2)) -> A__H2(mark1(X1), mark1(X2))
A__G3(d, X, X) -> A__A1
A__Z2(e, X) -> MARK1(X)
MARK1(g3(X1, X2, X3)) -> A__G3(mark1(X1), mark1(X2), mark1(X3))
MARK1(h2(X1, X2)) -> MARK1(X2)
A__F1(X) -> A__Z2(mark1(X), X)
MARK1(f1(X)) -> MARK1(X)
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK1(g3(X1, X2, X3)) -> MARK1(X2)
MARK1(A) -> A__A1
MARK1(g3(X1, X2, X3)) -> MARK1(X1)
MARK1(g3(X1, X2, X3)) -> MARK1(X3)
MARK1(h2(X1, X2)) -> MARK1(X1)
MARK1(h2(X1, X2)) -> A__H2(mark1(X1), mark1(X2))
MARK1(g3(X1, X2, X3)) -> A__G3(mark1(X1), mark1(X2), mark1(X3))
MARK1(h2(X1, X2)) -> MARK1(X2)
Used ordering: Polynomial Order [17,21] with Interpretation:
A__H2(X, X) -> A__G3(mark1(X), mark1(X), a__f1(a__k))
A__A1 -> A__F1(a__a)
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(f1(X)) -> A__F1(mark1(X))
A__A1 -> A__H2(a__f1(a__a), a__f1(a__b))
A__F1(X) -> MARK1(X)
A__A1 -> A__F1(a__b)
A__H2(X, X) -> A__F1(a__k)
A__H2(X, X) -> MARK1(X)
MARK1(z2(X1, X2)) -> MARK1(X1)
A__G3(d, X, X) -> A__A1
A__Z2(e, X) -> MARK1(X)
A__F1(X) -> A__Z2(mark1(X), X)
MARK1(f1(X)) -> MARK1(X)
POL( A__A1 ) = 1
POL( a ) = max{0, -3}
POL( k ) = max{0, -3}
POL( a__f1(x1) ) = 3x1
POL( a__k ) = max{0, -3}
POL( a__z2(x1, x2) ) = x1 + 2x2
POL( d ) = max{0, -3}
POL( A__H2(x1, x2) ) = x1 + 2x2 + 1
POL( a__g3(x1, ..., x3) ) = 2x1 + 2x2 + x3 + 3
POL( A ) = 3
POL( c ) = max{0, -3}
POL( l ) = max{0, -3}
POL( A__F1(x1) ) = 2x1 + 1
POL( a__A ) = 3
POL( h2(x1, x2) ) = x1 + 3x2 + 3
POL( a__d ) = max{0, -3}
POL( b ) = max{0, -1}
POL( mark1(x1) ) = x1
POL( g3(x1, ..., x3) ) = 2x1 + 2x2 + x3 + 3
POL( m ) = max{0, -3}
POL( f1(x1) ) = 3x1
POL( MARK1(x1) ) = x1 + 1
POL( a__a ) = max{0, -3}
POL( e ) = max{0, -3}
POL( A__G3(x1, ..., x3) ) = x3 + 1
POL( z2(x1, x2) ) = x1 + 2x2
POL( a__c ) = max{0, -3}
POL( A__Z2(x1, x2) ) = 2x2 + 1
POL( a__h2(x1, x2) ) = x1 + 3x2 + 3
POL( a__b ) = 0
a__a -> a__c
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
a__b -> b
mark1(b) -> a__b
mark1(d) -> a__d
a__b -> a__d
a__a -> a
mark1(k) -> a__k
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__g3(d, X, X) -> a__A
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__d -> d
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(l) -> l
mark1(m) -> m
a__d -> m
a__c -> e
mark1(c) -> a__c
a__f1(X) -> f1(X)
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
a__h2(X1, X2) -> h2(X1, X2)
a__b -> a__c
a__a -> a__d
a__z2(X1, X2) -> z2(X1, X2)
a__k -> l
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(a) -> a__a
a__k -> k
a__c -> l
mark1(e) -> e
a__A -> A
mark1(A) -> a__A
a__c -> c
a__k -> m
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
A__H2(X, X) -> A__G3(mark1(X), mark1(X), a__f1(a__k))
A__A1 -> A__F1(a__a)
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(f1(X)) -> A__F1(mark1(X))
A__A1 -> A__H2(a__f1(a__a), a__f1(a__b))
A__F1(X) -> MARK1(X)
A__A1 -> A__F1(a__b)
A__H2(X, X) -> A__F1(a__k)
A__H2(X, X) -> MARK1(X)
MARK1(z2(X1, X2)) -> MARK1(X1)
A__G3(d, X, X) -> A__A1
A__Z2(e, X) -> MARK1(X)
A__F1(X) -> A__Z2(mark1(X), X)
MARK1(f1(X)) -> MARK1(X)
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
A__Z2(e, X) -> MARK1(X)
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(f1(X)) -> A__F1(mark1(X))
A__F1(X) -> MARK1(X)
MARK1(z2(X1, X2)) -> MARK1(X1)
A__F1(X) -> A__Z2(mark1(X), X)
MARK1(f1(X)) -> MARK1(X)
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK1(f1(X)) -> A__F1(mark1(X))
A__F1(X) -> MARK1(X)
A__F1(X) -> A__Z2(mark1(X), X)
MARK1(f1(X)) -> MARK1(X)
Used ordering: Polynomial Order [17,21] with Interpretation:
A__Z2(e, X) -> MARK1(X)
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(z2(X1, X2)) -> MARK1(X1)
POL( k ) = 0
POL( a ) = 1
POL( a__f1(x1) ) = 2x1 + 2
POL( a__k ) = 0
POL( a__z2(x1, x2) ) = x1 + x2 + 1
POL( d ) = 1
POL( a__g3(x1, ..., x3) ) = max{0, -3}
POL( A ) = max{0, -3}
POL( c ) = 1
POL( l ) = 0
POL( A__F1(x1) ) = 2x1 + 1
POL( a__A ) = max{0, -3}
POL( h2(x1, x2) ) = max{0, -3}
POL( a__d ) = 1
POL( b ) = 1
POL( mark1(x1) ) = x1
POL( g3(x1, ..., x3) ) = max{0, -3}
POL( m ) = max{0, -3}
POL( f1(x1) ) = 2x1 + 2
POL( MARK1(x1) ) = max{0, 2x1 - 2}
POL( a__a ) = 1
POL( e ) = 1
POL( z2(x1, x2) ) = x1 + x2 + 1
POL( a__c ) = 1
POL( A__Z2(x1, x2) ) = 2x2
POL( a__h2(x1, x2) ) = max{0, -3}
POL( a__b ) = 1
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
a__a -> a__c
a__b -> b
mark1(b) -> a__b
mark1(d) -> a__d
a__a -> a
a__b -> a__d
mark1(k) -> a__k
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__g3(d, X, X) -> a__A
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__d -> d
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(l) -> l
mark1(m) -> m
a__d -> m
a__c -> e
mark1(c) -> a__c
a__f1(X) -> f1(X)
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
a__h2(X1, X2) -> h2(X1, X2)
a__a -> a__d
a__b -> a__c
a__z2(X1, X2) -> z2(X1, X2)
a__k -> l
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(a) -> a__a
a__k -> k
a__c -> l
mark1(e) -> e
a__A -> A
mark1(A) -> a__A
a__c -> c
a__k -> m
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
A__Z2(e, X) -> MARK1(X)
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(z2(X1, X2)) -> MARK1(X1)
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK1(z2(X1, X2)) -> A__Z2(mark1(X1), X2)
MARK1(z2(X1, X2)) -> MARK1(X1)
Used ordering: Polynomial Order [17,21] with Interpretation:
A__Z2(e, X) -> MARK1(X)
POL( k ) = 1
POL( a ) = max{0, -1}
POL( a__f1(x1) ) = max{0, 3x1 - 3}
POL( a__k ) = max{0, -3}
POL( a__z2(x1, x2) ) = max{0, 3x2 - 2}
POL( d ) = 1
POL( a__g3(x1, ..., x3) ) = max{0, -2}
POL( A ) = 1
POL( c ) = 2
POL( l ) = max{0, -3}
POL( a__A ) = max{0, -3}
POL( h2(x1, x2) ) = x1 + 3x2 + 1
POL( a__d ) = max{0, -2}
POL( b ) = max{0, -3}
POL( mark1(x1) ) = max{0, -3}
POL( g3(x1, ..., x3) ) = 3x1 + 2x2 + 3x3
POL( m ) = 0
POL( f1(x1) ) = max{0, -2}
POL( MARK1(x1) ) = max{0, x1 - 1}
POL( a__a ) = 1
POL( e ) = 1
POL( z2(x1, x2) ) = 2x1 + 2x2 + 3
POL( a__c ) = 1
POL( A__Z2(x1, x2) ) = x2
POL( a__h2(x1, x2) ) = 1
POL( a__b ) = 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
A__Z2(e, X) -> MARK1(X)
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
A__H2(X, X) -> A__G3(mark1(X), mark1(X), a__f1(a__k))
A__A1 -> A__H2(a__f1(a__a), a__f1(a__b))
A__G3(d, X, X) -> A__A1
a__a -> a__c
a__b -> a__c
a__c -> e
a__k -> l
a__d -> m
a__a -> a__d
a__b -> a__d
a__c -> l
a__k -> m
a__A -> a__h2(a__f1(a__a), a__f1(a__b))
a__h2(X, X) -> a__g3(mark1(X), mark1(X), a__f1(a__k))
a__g3(d, X, X) -> a__A
a__f1(X) -> a__z2(mark1(X), X)
a__z2(e, X) -> mark1(X)
mark1(A) -> a__A
mark1(a) -> a__a
mark1(b) -> a__b
mark1(c) -> a__c
mark1(d) -> a__d
mark1(k) -> a__k
mark1(z2(X1, X2)) -> a__z2(mark1(X1), X2)
mark1(f1(X)) -> a__f1(mark1(X))
mark1(h2(X1, X2)) -> a__h2(mark1(X1), mark1(X2))
mark1(g3(X1, X2, X3)) -> a__g3(mark1(X1), mark1(X2), mark1(X3))
mark1(e) -> e
mark1(l) -> l
mark1(m) -> m
a__A -> A
a__a -> a
a__b -> b
a__c -> c
a__d -> d
a__k -> k
a__z2(X1, X2) -> z2(X1, X2)
a__f1(X) -> f1(X)
a__h2(X1, X2) -> h2(X1, X2)
a__g3(X1, X2, X3) -> g3(X1, X2, X3)